
Association Analysis with One Scan of Databases�

Hao Huang ���, Xindong Wu ��� and Richard Relue ���

��� Dept. of Math and Computer Science, Colorado School of Mines
Golden, Colorado 80401, USA

��� Department of Computer Science, University of Vermont
Burlington, Vermont 05405, USA

Abstract
Mining frequent patterns with an FP-tree avoids costly

candidate generation and repeatedly occurrence frequency
checking against the support threshold. It therefore
achieves better performance and efficiency than Apriori-
like algorithms. However, the database still needs to
be scanned twice to get the FP-tree. This can be very
time-consuming when new data are added to an existing
database because two scans may be needed for not only the
new data but also the existing data. This paper presents
a new data structure P-tree, Pattern Tree, and a new tech-
nique, which can get the P-tree through only one scan of the
database and can obtain the corresponding FP-tree with a
specified support threshold. Updating a P-tree with new
data needs one scan of the new data only, and the existing
data do not need to be re-scanned.

1 Introduction
An association rule is an implication of the form � ��

� , where � and � are sets of items and � � � = �. The
support � of such a rule is that �% of transactions in the
database contain � � � ; the confidence � is that �% of
transactions in the database contain� also contain � at the
meantime. A rule can be considered interesting if it sat-
isfies the minimum support threshold and minimum confi-
dence threshold, which can be set by domain experts. Most
of the previous research with regard to association mining
was based on Apriori-like algorithms [1]. They can be de-
composed into two steps:

1. Find all frequent itemsets that hold transaction support
above the minimum support threshold.

2. Generate the desired rules from the frequent itemsets
if they also satisfy the minimum confidence threshold.

Apriori-like algorithms iteratively obtain candidate item-
sets of size (� � �) from frequent itemsets of size �. Each
iteration requires a scan of the original database. It is costly

�This research is supported in part by the U.S. Army Research Labo-
ratory and the U.S. Army Research Office under grant number DAAD19-
02-1-0178.

and inefficient to repeatedly scan the database and check a
large set of candidates for their occurrence frequencies. Ad-
ditionally, when new data come in, we have to run the entire
algorithms again to update the rules.

Recently, an FP-tree based frequent patterns mining
method [2] developed by Han et al achieves high efficiency,
compared with Apriori and TreeProjection [3] algorithms.
It avoids iterative candidate generations.

The rest of the paper is organized as follows. We review
the FP-tree structure in Section 2. In Section 3, we intro-
duce a new FP-tree based data structure, called pattern tree,
or P-tree, and discuss how to generate the P-tree by only one
database scan. How to generate an FP-tree from a P-tree is
discussed in Section 4. Section 5 deals with updating the
P-tree with new data, and Section 6 provides a reference for
our experimental results.

2 Frequent Pattern Mining and the Frequent
Pattern Tree

The frequent-pattern mining problem can be formally
defined as follows. Let I = ���,��,...,��� be a set of items,
and D be a transactions database, where each transaction T
is a set of items and T � I. An unique identifier, called its
TID, is assigned with each transaction. A transaction T con-
tains a pattern P, a set of items in I, if P� T. The support of
a pattern P is the number of transactions containing P in D.
We say that P is a frequent pattern if P’s support is no less
than a predefined minimum support threshold �.

A frequent pattern tree is a prefix-tree structure storing
frequent patterns for the transaction database, where the
support of each tree node is no less than a predefined min-
imum support threshold �. The frequent items in each path
are sorted in their frequency descending order. More fre-
quently occurring nodes have better chances of sharing the
prefix strings than less frequently occurring ones, that is to
say, more frequent nodes are closer to the root than less fre-
quent ones. In short, an FP-tree is a highly compact data
structure, “which is usually substantially smaller than the
original database, and thus saves the costly database scans
in the subsequent mining processes” [2].

After the construction of an FP-tree, we can use this data

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Association Analysis with One Scan of Databases

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

structure to efficiently mine the complete set of frequent
patterns with the FP-growth algorithm, which is a divide-
and-conquer method performed as follows:

1. Derive a set of conditional paths, which co-occurs with
a suffix pattern, from the FP-tree.

2. Construct a conditional FP-tree for each set of the con-
ditional paths.

3. Execute the frequent pattern mining recursively upon
the conditional FP-tree.

The study in [2] shows that the FP-growth algorithm is
more efficient and scalable than both Apriori and TreePro-
jection [3]. The FP-tree based algorithm has some inherent
advantages: the new data structure is desirably compact and
the pattern growth algorithm is efficient with the data struc-
ture. But it also has the following problems:

1. A new FP-tree requires scanning the database twice.

2. Although a validity support threshold, watermark
[2], is realizable, there is no guarantee of complete
database information for the FP-tree when new data
come into the database.

3. If the specific threshold is changed, we will have to
rerun the whole FP-tree construction algorithm, that is,
rescan the database twice to get the new corresponding
frequent item list and a new FP-tree.

4. Even if the threshold remains the same, an FP-tree
can’t be constructed or updated at real-time. Each con-
struction or updating needs to go from scratch, and
scan the new and old data twice.

3 Patterns Generation with the Pattern Tree

The FP-tree based method has to scan the database twice
to get an FP-tree, whose central idea is to get the list 	 of
item frequencies in the first time and then construct the FP-
tree in the second time according to 	.

A Pattern Tree (P-tree for short), unlike FP-tree, which
contains the frequent items only, contains all items that ap-
pear in the original database. We can obtain a P-tree through
one scan of the database and get the corresponding FP-tree
from the P-tree later.

The construction of a P-tree can be divided into two steps
as well:

1. When retrieving transactions from a database, we can
generate a P-tree by inserting transactions one by one
after we sort the items of each transaction in some or-
der (alphabetic, numerical or any other specific order),
and meanwhile record the actual support of every item
into the item frequency list 	.

2. After the first and only scan of the database, we sort 	
according to item supports. The restructure of the P-
tree consists of similar insertions in the first step. The
only difference is that one needs to sort the path ac-
cording to 	 before inserting it into a new P-tree.

This approach makes the best use of the occurrence of
the common suffix in transactions, thereby constructing a
more compact tree structure than FP-tree.
3.1 Algorithm

Algorithm 1 (P-Tree Generation)

Input: A transaction database DB and a minimum support threshold
minisup

Output: A Pattern tree
The pattern tree can be created in two steps:
Step 1: Construct a P-tree � and obtain the item frequency list �.

(1) � � Root
(2) �� �

(3) For each transaction � in the transaction database
a. Sort � into [t � ��] in alphabetic order. Here in each sorted

transaction � = [t � ��], t is the first item of the transaction
and �� is the remaining items in the transaction.

b. Insert([t � ��], �)
c. Update � with items in [t � ��]

The function Insert([t �
�], �) performs as follows.
Function Insert([t � ��], �)

BEGIN
FOR each of � ’s child node N

IF t.itemName = N.itemName
THEN

N.frequency�N.frequency+1
IF �� is not empty

THEN
Insert(�� ,N)

ENDIF
RETURN

ENDIF
ENDFOR
Create a new Node N’
N’.itemName�t.itemName
N’.frequency�1
P.childList�N’
IF �� is not empty

THEN Insert(�� , N’)
ENDIF
RETURN

END
Step 2: Restructure the initial P-tree �

(1) ���� � Root
(2) For each path �� from the root to a leaf in the initial P-tree � ,

Until �� � � do:

a. The common support of each item in �� is that of the node
next to the last branching-node. If there is no branching-node
in ��, the common support of each item is the actual support
of each item in ��.
A branching-node is a node after which there exists more than
one branch in the tree.

b. Get a sub-path �
�

�
from �� with the common support for every

item.
c. Sort �

�

�
according to �.

d. Insert the sorted �
�

�
into the new P-tree, by calling function

Insert(�
�

�
, newP).

e. �� � �� � �
�

�
	

3.2 Analysis
The P-tree generation algorithm needs exactly one scan

of the database and one scan of the initial P-tree. The run-
ning time depends on how the patterns distribute in the
database. The more high frequent patterns in the database,
the faster the algorithm will be. The lower bound is the run-
time of one scan of the database. In the contrary, the less
the high frequent patterns in the database, the slower the
algorithm will be. The upper bound is the runtime of two
database scans.
3.3 Pattern Tree: A Formal Definition

A pattern tree (or P-tree for short) is a rooted tree struc-
ture, which has the following properties:

1. The root is labeled as “Root”. All other items are either
its children or its descendants.

2. Each node except the root is composed of three fields:
itemName, frequency and childList, where itemName
stands for the actual item in the transaction database,
frequency represents the transaction support of the
item in the database, and childList stores a list of its
child nodes.

3. A path in a P-tree represents at least one transaction
and the corresponding occurrence(s), which is the fre-
quency of its least frequent item(s).

4. A node holds more or equal frequency to its children or
descendants. Note that the root node doesn’t have the
actual meaning in transactions, so we don’t consider
its frequency.

5. A prefix shared by several paths represents the com-
mon pattern in those transactions and its frequency.
The more paths share the prefix, the higher frequency
it has.

4 FP-Tree Generation from the P-Tree
From the definition of the P-tree, we can observe that an

FP-tree is a sub-tree of the P-tree with a specified support
threshold, which contains those frequent items that meet
this threshold and hereby excludes infrequent items. We
will propose an algorithm and analyze it in this section.
4.1 Algorithm

After the generation of the P-tree, we can easily get the
frequent item list given a specific support threshold. All we
need to do is to get rid of those infrequent items from item
frequency list 	. Next, we prune the P-tree to exclude the
infrequent nodes by checking the frequency of each node
along the path from the root to leaves. Because the fre-
quency of each node is not less than that of its children or
descendents, we delete the node and its subtrees at the same
time if it is infrequent.

Algorithm 2 (FP Generation from the P-Tree)
Input: A P-tree � , the frequency list �, & the support threshold

Output: An FP-tree

1. Frequent Item List ������ �

2. For each item i in L

If i.frequency �

Add i to FIList

3. Sort FIList in frequency descending order

4. Invoke check(�). The function check is described as follows.

Function check(N)

BEGIN
FOR each child c of the node N

IF c � FIList
THEN

check(c)
ELSE

Delete c (and the possible
subtree starting from �)

ENDIF
ENDFOR
RETURN

END

4.2 Analysis
In practice, we can compare the user-defined minimum

support threshold with the occurrence recorded in the item
frequency list. So the pruning could be done according to
the following two rules:

1. If the minimum support threshold is higher than the
occurrence of most items, then we can check the items
along the path beginning from the root as mentioned
in Section 3.1. Once an infrequent item is found, its
subtree including itself is deleted from the pattern tree.

2. When the occurrence of most items is above the mini-
mum support threshold, we can check the items along
the path beginning from the leaves, the inverse order
with the first rule. As long as a frequent item is found,
we keep it and prune its subtree.

Regardless of which rule is applied, the algorithm checks
at most half amount of items in a pattern tree. In the mining
process, the users always need to adjust the support thresh-
olds to achieve an appropriate one. If the support thresh-
old is set too high, the process may produce fewer frequent
items and some important rules can not be generated. On
the other hand, if the support threshold is set too low, the
process may produce too many frequent items and some
rules may become meaningless. One advantage of our ap-
proach is that we can easily get different FP-trees corre-
sponding to different support thresholds. When the support
threshold is changed, no further database scans are needed.

5 Updating the Pattern Tree with New Data
One concern with the P-tree is how to update it with new

data. In this section, we will propose an algorithm to solve
the problem and illustrate the process with an example.

As the database can always be updated, how to update
the old rules is an important problem in data mining. There

are two ways to update an FP-tree. One is to apply the con-
struction algorithm to the new database, i.e. scan the up-
dated database twice. In this case, the previous two scans
of the old database are discarded. The other is to set “a va-
lidity support threshold (called watermark)” in [2]. The wa-
termark goes up to exclude the originally infrequent items
while their frequency goes up. But it may need to go down
since the frequency of frequent items may drop when more
and more transactions come in. This solution can’t guar-
antee the completeness of the generated association rules.
With new information the originally infrequent items may
become frequent and vice versa.

Since we can generate the P-tree by scanning the
database only once, we are also able to update the P-tree
by one scan of new data without the need for two scans of
the existing database and the second scan for the new data.

We can first insert the new transactions into the P-tree
according to the item frequency list and meanwhile update
the list. Then a new P-tree can be restructured according to
the updated item frequency list. In the case there comes a
new item, which does not appear in the existing database,
we can assume its support is 0 and append it as a leaf node.

5.1 Algorithm
Algorithm 3 (P-Tree Updating)

Input: The original P-tree, P1, the original item frequency list, L, and a
new transaction database DB’. (Note that with a compact format the orig-
inal P-tree P1 contains all items in the existing transaction database no
matter whether or not they are frequent.)

Output: Updated pattern tree, P2
Step 1: Expand P1 using new data and meanwhile update L.

(1) For each transaction � in the new transaction database DB’

a. Sort � according to the original frequency list L

b. Insert(� , P1)

c. Update L with items in �

(2) Sort L in frequency descending order.

Step 2: Restructure the expanded P-tree P1 into P2 according to the up-
dated L.

(1) ��� ����

(2) For each path �� in P1,

Until �� � � do:

a. Let � be the common support of each item in ��.

b. Get a sub-path �
�

�
from �� with the common support for every

item.

c. Sort �
�

�
according to L.

d. Insert(�
�

�
, P2).

e. �� � �� � �
�

�
	

5.2 Analysis

The most difficult problem concerning the FP-tree is to
handle updates in the database. Once some new transactions
are added, a new FP-tree has to be constructed to deal with
these changes. The main advantages of the above algorithm
in Section 5.1 are:

1. There is no further need to scan the existing database,
because the original P-tree is already a compact ver-
sion. Thus, the algorithm makes updating the P-tree
more efficient by reusing the old computations on the
original database.

2. We need to scan the new data only once. According to
[2], an FP-tree is obtained by two scans of the entire
database, including the existing and new database.

3. In the worst case, the cost of our algorithm is still
�� � ��, where is the maximum length of trans-
actions and � the number of the transactions in the
database.

6 Tests and Results
We have performed experiments with multiple FP-tree

generation and FP-tree updating while new data are added.
Our test results show that the P-tree method outperforms the
FP-tree method by an factor up to an order of magnitude in
large datasets. The test environment, test databases, and de-
tailed results are omitted in this paper due to size restrictions
and can be found in [4].

7 Conclusions
We have proposed a new data structure, pattern tree or P-

tree, and discussed how to obtain the P-tree by one database
scan and how to update the P-tree by one scan of new data.
Moreover, we have addressed how to get the correspond-
ing FP-trees from the P-tree with different user-specified
thresholds and also the completeness property of the P-tree.
We have implemented the P-tree method and presented the
test results in [4], showing that our method always outper-
forms the FP-tree method.

The key point of our method is to make best use of the
P-tree structure, which presents a large database in a highly
condensed format, and avoids the second database scan.

References

[1] M.-Y. Chen, J. Han, and P. Yu. Data Mining: An Overview
from a Database Perspective. IEEE Transactions on Knowl-
edge and Data Engineering. 8(6): 866–883, 1996.

[2] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns Without
Candidate Generation. Proc. of ACM Int. Conf. on Manage-
ment of Data (SIGMOD), 1–12, 2000.

[3] R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A Tree
Projection Algorithm for Generation of Frequent Itemsets.
Journal of Parallel and Distributed Computing, 61(3): 350–
371, 2001.

[4] H. Huang, X. Wu and R. Relue. Association Anal-
ysis with One Scan of Databases. University of Ver-
mont Computer Science Technical Report CS-02-3, 2002.
http://www.cs.uvm.edu/tr/CS-02-03.shtml

